Heaviside step function

Definition

One definition (depends on convention of definition at 00 is: 1(t)={1for t00for t<01(t) = \begin{cases}1 \quad \text{for } t \geq 0 \\ 0 \quad \text{for } t <0 \end{cases}

Discrete form

#incomplete

Further notes

See Singularity functions, μ1(t)=1(t)\mu_1(t) = 1(t)

Related to Delta function, μ0(t)=δ(t)\mu_0(t) = \delta(t),

relationship between delta function and unit function

1(t)=tδ(τ)dτ1(t) = \int_{-\infty}^t \delta(\tau) d\tau


References

  1. https://lpsa.swarthmore.edu/BackGround/ImpulseFunc/ImpFunc.html
  2. https://mathworld.wolfram.com/HeavisideStepFunction.html
  3. https://en.wikipedia.org/wiki/Heaviside_step_function